If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5=-x^2+6x+19
We move all terms to the left:
5-(-x^2+6x+19)=0
We get rid of parentheses
x^2-6x-19+5=0
We add all the numbers together, and all the variables
x^2-6x-14=0
a = 1; b = -6; c = -14;
Δ = b2-4ac
Δ = -62-4·1·(-14)
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{23}}{2*1}=\frac{6-2\sqrt{23}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{23}}{2*1}=\frac{6+2\sqrt{23}}{2} $
| 10t–96=2t | | 5(v-3)=7v-17 | | 55+4x=131 | | 4n+11-2n=1 | | 10z=6z+36 | | 32=4(v+)-6v | | 3y+1=16+4y | | (4)/(5z)=16 | | c/53=8 | | 55+4x=118 | | 6y2+31y+40=0 | | -34=-4x+7(x-4) | | 200=16(t-3) | | -0.1b=3.6 | | 6x-18+2x=6 | | 24.99+0.15x=32 | | -01b=3.6 | | 11=-7u+2(u-7) | | 4(4-4x)=-10-16× | | 154(8x-5)=180 | | -6=6(w+4)+4w | | 154`(8x-5)=180 | | 18=2+p | | 3/7x=-4/7x-7 | | 1=3(v-8)+2v | | -2.2=w/6 | | 6u–80=u | | 2(3-h)-6=24 | | 140=(2x+6)+80 | | 9x+3x-5=2(6x-3)+10 | | 5^x^2+^3x=25^4x+12 | | 2(m-3)=-4(m+1) |